Chi Squared Tests (Contingency Tables) (From OCR 4734)

Q1, (Jan 2008, Q6)

(i)
(ii)
H_{0} : Gender and shade are
$\left(\mathrm{H}_{1}:--\right.$ are not independent
$3.02^{\left(14.02^{-1}+14.98^{-1}\right)+}$
$6.12^{2}\left(17.88^{-1}+19.12^{-1}\right)$
$+3.1^{2}\left(26.1^{-1}+27.9^{-1}\right)$
$=6.03$
EITHER: CV 5.991
$6.03>5.991$, reject H_{0} and accept that gender and shade are not independent
OR: $\mathrm{P}\left(\chi^{2}>6.03\right)=0.049$
<0.05, reject H_{0} and accept that gender and shade are not independent
(iii)

	G_{1}	G_{2}	G_{3}
O	29	37	54
E	40	40	40
$121 / 40$	$+9 / 40+196 / 40$		
$=8.15$			
Using df $=2$			
2.5% tables, 1.7%			
calculator			

Q2, (Jan 2010, Q7)
(i) H_{0} :Vegetable preference is independent of gender H_{1} : All alternatives
$\begin{array}{rlll}\text { E-Values } & 26 & 16.25 & 22.75 \\ & 22 & 13.75 & 19.25 \\ \chi^{2} & =5^{2}\left(26^{-1}+22^{-1}\right)+ & 7.25^{2}\left(16.25^{-1}+13.75^{-1}\right) \\ & =9.641 & & +2.25^{2}\left(22.75^{-1}+19.25^{-1}\right)\end{array}$
$9.64>5.991$
Reject H_{0}, (there is sufficient evidence at the 5% that) vegetable preference and gender are not independent
(ii)
$\left(\mathrm{H}_{0}\right.$: Vegetables have equal preference
H_{1} : All alternatives)
Combining rows: $48 \quad 30 \quad 42$
E-Values: $\quad 40 \quad 40 \quad 40$
$\chi^{2}=\left(8^{2}+10^{2}+2^{2}\right) / 40$
$=4.2$
$4.2<4.605$
Do not reject H_{0}, there is insufficient evidence at the 10% significance level of a difference in the proportion of preferred vegetables

For both hypotheses
At least one correct
All correct
Correct form of any one
All correct
ART 9.64
OR: $\mathrm{P}(\geq 9.641)=0.00806<0.05$

8

Or equivalent

At least two correct
All correct

Ft X^{2}. Can be assertive.

Ft X^{2}

For combining

M1
A1
M1
A1
M1
A1

$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	Or equivalent
B1	
M1	At least two correct
A1	All correct
A1	
B1	
M1	
$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	Ft X^{2}. Can be assertive.
M1	
A1 $\sqrt{ }$	Ft X^{2}
M1	For combining
A1	
M1	
A1	
M1	
A1 6 (15)	

B1		For both hypotheses
M1		At least one correct
A1		All correct
M1		Correct form of any one
A1		All correct
A1		ART 9.64
M1		OR: $\mathrm{P}(\geq 9.641)=0.00806<0.05$
8		
M1		
A1		
M1		
A1		
M1		$\mathrm{OR}: \mathrm{P}(\geq 4.2)=0.122>0.10$
A1	6	
[14]		AEF in context

(i) H_{0} : There is no association between the area in which a shopper lives and the day they shop
(H_{1} : All alternatives)
$\begin{array}{lll}\text { E-Values } & 27.3 & 14.7\end{array}$
$37.7 \quad 20.3$
$X^{2}=(4.3-0.5)^{2}\left(27.3^{-1}+37.7^{-1}+14.7^{-1}+20.3^{-1}\right)$ $=2.606$
Compare with 2.706 Do not reject H_{0}. There is insufficient evidence of an association.
(ii)

SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1

Conclusion the same since critical value > 2.706
(and test statistic unchanged)
B1
M1
A1
M1 ft
A1
A1
M1
A1

Q4, (Jan 2011, Q7)
(i) In a 2×2 contingency table
(ii) H_{0} : Vaccine type and outcome are independent
H_{1} : They are not independent
E-values: $10.81 \quad 12.19$
318.19358 .81
$\chi^{2}=7.69^{2}\left(10.81^{-1}+12.19^{-1}+318.19^{-1}+358.81^{-1}\right)$

$$
=10.67
$$

$\mathrm{CV}=6.635$
$10.67>$ CV
Reject H_{0}, there is sufficient evidence at the 1% significance level that the outcome of the test depends on the vaccine used

The results is significant at a level less than $1 / 2 \%$, so the evidence is very strong

B1 \mid SR difference in proportions

 B1 define and evaluate p_{1} and p_{2} with H_{0}B1 for $p=0.42$
M1A1 for $z= \pm 1.827$ or 1.835 (no pe)
M1A0 Max 5/8
At least one E value correct (M1)
All correct(A1)
At least one X^{2}, no or wrong cc, (M1FtE)
All correct (A1); 2.606 or 2.61 (A1)
Or use calculator ($p=0.106$) SR: B1
if no explicit comparison, as Q2
SR: If H_{0} association, lose $1^{\text {st }} \mathrm{B} 1$ and last M1A1

OR from $z= \pm 2.17, \mathrm{SR}$

B1 1	Or equivalent Accept df=1
B1M*dep	Accept omission of H_{1}
M1	1 correct E value
A1	Accept 1 dp
M1	1 correct χ^{2} value ft E values
M1	Using Yates' correctly
A1	Accept 10.7
B1	
M1	
$\begin{aligned} & \mathrm{A} 1 \sqrt{ } \\ & \operatorname{dep}^{*} \mathrm{M} \end{aligned}$	$\sqrt{ } 10.67$
$\begin{gathered} \mathrm{A} 1 \sqrt{ } 10 \\ {[11]} \end{gathered}$	Sensible comment. $\sqrt{ } 10.67$

Q5, (Jun 2012, Q2)

(i) $\quad \mid \mathrm{H}_{0}$: no association between sex and artist preferred H_{1} : some association between sex and artist preferred

EXPECTED	Monet	Renoir	Degas	Cézanne
Male	12.13	28	13.07	16.8
Female	13.87	32	14.93	19.2

CONTRIB’N	Monet	Renoir	Degas	Cézanne
Male	1.4081	0.3214	1.8626	0.2881
Female	1.2321	0.2813	1.6298	0.2521

$X^{2}=7.28$
Refer to $\chi_{3}{ }^{2}$
Critical value at 10% level $=6.251$
Result is significant
There is evidence to suggest that there is some association between sex and artist preferred

NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, or 'correlation' mentioned, do not award first B1 or final E1

B1 For both hypotheses in context

For expected values
(to 2 dp where appropriate)
(allow A1 for at least one row or column correct)

For valid attempt at $(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}$
For all correct (to 2 dp) and presented in a table or clear list. (Allow A1 for at least one row or column correct)

Allow 7.27
for 3 deg of f
CAO for cv No FT from here if wrong or omitted, unless p-value used instead FT their X^{2}

For correct (FT their X^{2}), non-assertive conclusion, in context.

NB:These three marks cannot be implied by a correct final value of X^{2}
www

B1 for p-value $=$ 0.0636

Monet: More females and fewer males than expected
prefer Monet, as indicated by large contribution(s) (of
1.4081 and 1.2321).
Renoir: Preferences are much as expected, as indicated by
small contributions.
Degas: Fewer females and more males than expected
prefer Degas, as indicated by large contribution(s) (of
1.8626 and 1.6298).
Cézanne: Preferences are much as expected, as indicated
by small contributions.

E1* E1dep*	FT their table of contributions	NB MAX 3/6 for answers not referring to contributions (explicitly or implicitly).
E1		E1* depE1*
E1		SC1 Renoir and Cézanne have correct comments for both but without referring to contributions
$[6]$		

ALevelMathsRevision.com

Q6, (Jun 2013, Q6)			
(i)	$\begin{array}{\|rr\|r\|} 17.5 & 4.2 & 6.3 \\ 32.5 & 7.8 & 11.7 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\mid \text { eg } 50 \times 28 \div 80$ At least 2 correct. All correct.
(ii)	The E value of $4.2<5$ Combine Biology and Chemistry (both sciences).	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2 } \end{aligned}$	Need not mention 4.2 May need to look at (iii) to see which subjects combined.
(iii)	Ho: Subject and sex are independent H_{1} : They are not independent 21.76 .3 40.311 .7 $\begin{aligned} \chi^{2} & =(4.7-0.5)^{2}\left(21.7^{-1}+6.3^{-1}+40.3^{-1}+11.7^{-1}\right) \\ & =5.558 \ldots \\ (v & =1) \end{aligned}$ (a) $2 \frac{1}{2} \% \mathrm{CV}=5.024$ $5.558>\mathrm{CV}$ or in CR and reject H_{0}	B1 B1 M1M1 A1 B1 M1	oe. NOT 'variables', 'they' etc or 17.510 .5 32.519 .5 if C/A combined. No Yates(inc $v>1$) or incorrect Yates (eg no modulus) M1M0. allow 6.96 or 6.79 Chem./Art combined B1B1M1M1A0B1M1A0. (TS = 3.75) ft TS \& CV. Correct first conclusion. If C/A prob. accept H_{0}.
	$\begin{gathered} (\beta) \mathrm{P}\left(\chi^{2}{ }_{1} \geq 5.558\right)=0.0184 \\ <0.025 \text { and reject } \mathrm{H}_{0} \end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \hline \end{aligned}$	
	There is significant evidence that subject and sex are not independent	A1 $[8]$	cwo. NOT over-assertive. Thus no or incorrect Yates can score $\max 6 / 8$ B1B1M1M0A1B1M1A0.

Q7, (Jun 2016, Q2)

H_{0} :there is no assoc. between party and opinion, H_{1} :there is assoc. between p / o. Expected frequencies
$45,18,27,20,8,12,35,14,21$
$\frac{(58-45)^{2}}{45}+\ldots .+\frac{(33-21)^{2}}{21}$
30.48

B1	For both.Allow indpt. etc.	
M1		
A1		
M1	At least one correct term; at least 7 terms.	If classes combined, all 6.
A1	Allow awrt 30.5	
M1		
A1	CWO	
[7]		

Q8, (Jun 2017, Q3)
H_{0} : there is no assoc between hair/eyes colours. H_{1} : there is assoc
Es 30.16, 27.84, 21.84, 20.16
$(|36-30.16|-0.5)^{2 / 30.16}+\ldots .$.
allow this mark if no Yates' correction.(5.61) $\quad 0.945+1.306+1.024+1.414$
4.69
$\mathrm{CV}=3.841$
$4.69>3.841$, reject H_{0},
There is evidence of an assoc. between
hair/eye colours.

allow this mark if no Yates' correction.(5.61)	$0.945+1.306+1.024+1.414$
ft TS and CV cwo. Contextualised.	

